Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Am J Physiol Regul Integr Comp Physiol ; 322(3): R161-R169, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1770007

ABSTRACT

Arginine vasopressin (AVP) is produced in the paraventricular (PVN) and supraoptic nuclei (SON). Peripheral AVP, which is secreted from the posterior pituitary, is produced in the magnocellular division of the PVN (mPVN) and SON. In addition, AVP is produced in the parvocellular division of the PVN (pPVN), where corticotrophin-releasing factor (CRF) is synthesized. These peptides synergistically modulate the hypothalamic-pituitary-adrenal (HPA) axis. Previous studies have revealed that the HPA axis was activated by hypovolemia. However, the detailed dynamics of AVP in the pPVN under hypovolemic state has not been elucidated. Here, we evaluated the effects of hypovolemia and hyperosmolality on the hypothalamus, using AVP-enhanced green fluorescent protein (eGFP) transgenic rats. Polyethylene glycol (PEG) or 3% hypertonic saline (HTN) was intraperitoneally administered to develop hypovolemia or hyperosmolality. AVP-eGFP intensity was robustly upregulated at 3 and 6 h after intraperitoneal administration of PEG or HTN in the mPVN. While in the pPVN, eGFP intensity was significantly increased at 6 h after intraperitoneal administration of PEG with significant induction of Fos-immunoreactive (-ir) neurons. Consistently, eGFP mRNA, AVP hnRNA, and CRF mRNA in the pPVN and plasma AVP and corticosterone were significantly increased at 6 h after intraperitoneal administration of PEG. The results suggest that AVP and CRF syntheses in the pPVN were activated by hypovolemia, resulting in the activation of the HPA axis.


Subject(s)
Arginine Vasopressin/genetics , Green Fluorescent Proteins/genetics , Hypothalamo-Hypophyseal System/metabolism , Hypovolemia/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Animals , Corticosterone/blood , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Disease Models, Animal , Genes, Reporter , Green Fluorescent Proteins/biosynthesis , Hypothalamo-Hypophyseal System/physiopathology , Hypovolemia/genetics , Hypovolemia/physiopathology , Injections, Intraperitoneal , Male , Paraventricular Hypothalamic Nucleus/physiopathology , Polyethylene Glycols/administration & dosage , Proto-Oncogene Proteins c-fos/metabolism , Rats, Transgenic , Rats, Wistar , Saline Solution, Hypertonic/administration & dosage , Supraoptic Nucleus/metabolism , Supraoptic Nucleus/physiopathology , Time Factors , Up-Regulation
2.
Food Funct ; 12(22): 11241-11249, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1545659

ABSTRACT

The discovery of psychobiotics has improved the therapeutic choices available for clinical mental disorders and shows promise for regulating mental health in people by combining the properties of food and medicine. A Pediococcus acidilactici strain CCFM6432 was previously isolated and its mood-regulating effect was investigated in this study. Viable bacteria were given to chronically stressed mice for five weeks, and then the behavioral, neurobiological, and gut microbial changes were determined. CCFM6432 significantly reduced stress-induced anxiety-like behaviors, mitigated hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, and reversed the abnormal expression of hippocampal phosphorylated CREB and the c-Fos protein. In particular, CCFM6432 improved the gut microbial composition by inhibiting the over-proliferated pathogenic bacteria (e.g., Escherichia-shigella) and promoting beneficial bacteria growth (e.g., Bifidobacterium). Lactic acid, rather than bacteriocin, was further confirmed as the key compound that determined the antimicrobial activity of CCFM6432. Collectively, these results first proved the psychobiotic potential of the Pediococcus acidilactici strain. Ingestion of CCFM6432, or fermented food containing it, may facilitate mental health management in daily life, especially during the COVID-19 pandemic.


Subject(s)
Anxiety/microbiology , Gastrointestinal Microbiome/drug effects , Hypothalamo-Hypophyseal System/drug effects , Lactic Acid/pharmacology , Pediococcus acidilactici , Probiotics/pharmacology , Animals , CREB-Binding Protein/metabolism , Hippocampus/metabolism , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-fos/metabolism
3.
Behav Brain Res ; 417: 113630, 2022 01 24.
Article in English | MEDLINE | ID: covidwho-1466066

ABSTRACT

Social isolation gained discussion momentum due to the COVID-19 pandemic. Whereas many studies address the effects of long-term social isolation in post-weaning and adolescence and for periods ranging from 4 to 12 weeks, little is known about the repercussions of adult long-term social isolation in middle age. Thus, our aim was to investigate how long-term social isolation can influence metabolic, behavioural, and central nervous system-related areas in middle-aged mice. Adult male C57Bl/6 mice (4 months-old) were randomly divided into Social (2 cages, n = 5/cage) and Isolated (10 cages, n = 1/cage) housing groups, totalizing 30 weeks of social isolation, which ended concomitantly with the onset of middle age of mice. At the end of the trial, metabolic parameters, short-term memory, anxiety-like behaviour, and physical activity were assessed. Immunohistochemistry in the hippocampus (ΔFosB, BDNF, and 8OHDG) and hypothalamus (ΔFosB) was also performed. The Isolated group showed impaired memory along with a decrease in hippocampal ΔFosB at dentate gyrus and in BDNF at CA3. Food intake was also affected, but the direction depended on how it was measured in the Social group (individually or in the group) with no alteration in ΔFosB at the hypothalamus. Physical activity parameters increased with chronic isolation, but in the light cycle (inactive phase), with some evidence of anxiety-like behaviour. Future studies should better explore the timepoint at which the alterations found begin. In conclusion, long-term social isolation in adult mice contributes to alterations in feeding, physical activity pattern, and anxiety-like behaviour. Moreover, short-term memory deficit was associated with lower levels of hippocampal ΔFosB and BDNF in middle age.


Subject(s)
Anxiety/etiology , COVID-19 , Feeding Behavior , Hippocampus/metabolism , Locomotion , Memory Disorders/etiology , Social Isolation , Age Factors , Animals , Behavior, Animal/physiology , Brain-Derived Neurotrophic Factor , COVID-19/prevention & control , Disease Models, Animal , Feeding Behavior/physiology , Housing, Animal , Hypothalamus/metabolism , Locomotion/physiology , Male , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-fos/metabolism
4.
Int J Mol Sci ; 22(11)2021 May 26.
Article in English | MEDLINE | ID: covidwho-1244042

ABSTRACT

Infection induces the production of proinflammatory cytokines and chemokines such as interleukin-8 (IL-8) and IL-6. Although they facilitate local antiviral immunity, their excessive release leads to life-threatening cytokine release syndrome, exemplified by the severe cases of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In this study, we investigated the roles of the integrated stress response (ISR) and activator protein-1 (AP-1) family proteins in regulating coronavirus-induced IL-8 and IL-6 upregulation. The mRNA expression of IL-8 and IL-6 was significantly induced in cells infected with infectious bronchitis virus (IBV), a gammacoronavirus, and porcine epidemic diarrhea virus, an alphacoronavirus. Overexpression of a constitutively active phosphomimetic mutant of eukaryotic translation initiation factor 2α (eIF2α), chemical inhibition of its dephosphorylation, or overexpression of its upstream double-stranded RNA-dependent protein kinase (PKR) significantly enhanced IL-8 mRNA expression in IBV-infected cells. Overexpression of the AP-1 protein cJUN or its upstream kinase also increased the IBV-induced IL-8 mRNA expression, which was synergistically enhanced by overexpression of cFOS. Taken together, this study demonstrated the important regulatory roles of ISR and AP-1 proteins in IL-8 production during coronavirus infection, highlighting the complex interactions between cellular stress pathways and the innate immune response.


Subject(s)
Coronavirus Infections/metabolism , Endoplasmic Reticulum Stress/genetics , Eukaryotic Initiation Factor-2/metabolism , Interleukin-8/metabolism , Unfolded Protein Response/genetics , Alphacoronavirus/metabolism , Alphacoronavirus/pathogenicity , Animals , Cell Line , Chlorocebus aethiops , Coronavirus Infections/genetics , Gammacoronavirus/metabolism , Gammacoronavirus/pathogenicity , Gene Expression Regulation , Humans , Immunity, Innate , Infectious bronchitis virus/metabolism , Infectious bronchitis virus/pathogenicity , Interleukin-8/genetics , Phosphorylation , Porcine epidemic diarrhea virus/metabolism , Porcine epidemic diarrhea virus/pathogenicity , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-jun/genetics , Proto-Oncogene Proteins c-jun/metabolism , Signal Transduction/genetics , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Up-Regulation , Vero Cells , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
5.
Am J Respir Cell Mol Biol ; 65(4): 403-412, 2021 10.
Article in English | MEDLINE | ID: covidwho-1237350

ABSTRACT

Mechanical ventilation is a known risk factor for delirium, a cognitive impairment characterized by dysfunction of the frontal cortex and hippocampus. Although IL-6 is upregulated in mechanical ventilation-induced lung injury (VILI) and may contribute to delirium, it is not known whether the inhibition of systemic IL-6 mitigates delirium-relevant neuropathology. To histologically define neuropathological effects of IL-6 inhibition in an experimental VILI model, VILI was simulated in anesthetized adult mice using a 35 cc/kg tidal volume mechanical ventilation model. There were two control groups, as follow: 1) spontaneously breathing or 2) anesthetized and mechanically ventilated with 10 cc/kg tidal volume to distinguish effects of anesthesia from VILI. Two hours before inducing VILI, mice were treated with either anti-IL-6 antibody, anti-IL-6 receptor antibody, or saline. Neuronal injury, stress, and inflammation were assessed using immunohistochemistry. CC3 (cleaved caspase-3), a neuronal apoptosis marker, was significantly increased in the frontal (P < 0.001) and hippocampal (P < 0.0001) brain regions and accompanied by significant increases in c-Fos and heat shock protein-90 in the frontal cortices of VILI mice compared with control mice (P < 0.001). These findings were not related to cerebral hypoxia, and there was no evidence of irreversible neuronal death. Frontal and hippocampal neuronal CC3 were significantly reduced with anti-IL-6 antibody (P < 0.01 and P < 0.0001, respectively) and anti-IL-6 receptor antibody (P < 0.05 and P < 0.0001, respectively) compared with saline VILI mice. In summary, VILI induces potentially reversible neuronal injury and inflammation in the frontal cortex and hippocampus, which is mitigated with systemic IL-6 inhibition. These data suggest a potentially novel neuroprotective role of systemic IL-6 inhibition that justifies further investigation.


Subject(s)
Antibodies/pharmacology , Apoptosis/drug effects , Delirium/metabolism , Interleukin-6/antagonists & inhibitors , Neurons/metabolism , Ventilator-Induced Lung Injury/metabolism , Animals , Delirium/drug therapy , Delirium/pathology , Disease Models, Animal , Female , Frontal Lobe/injuries , Frontal Lobe/metabolism , Frontal Lobe/pathology , HSP90 Heat-Shock Proteins/metabolism , Hippocampus/injuries , Hippocampus/metabolism , Hippocampus/pathology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Interleukin-6/metabolism , Mice , Neurons/pathology , Proto-Oncogene Proteins c-fos/metabolism , Repressor Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Ventilator-Induced Lung Injury/drug therapy , Ventilator-Induced Lung Injury/pathology
SELECTION OF CITATIONS
SEARCH DETAIL